e-ISSN 2231-8542
ISSN 1511-3701
Siti Samsiah Yaakup, Nursyazwani Ab Halim and Phebe Ding
Pertanika Journal of Tropical Agricultural Science, Volume 47, Issue 4, November 2024
DOI: https://doi.org/10.47836/pjtas.47.4.08
Keywords: Ascorbic acid content, dry weight, firmness, leaf area, weeks after transplanting
Published on: 29 November 2024
Lettuce is an easy-to-grow and nutrient-rich leafy vegetable. It grows well using a static hydroponic system, which saves space and is easy to maintain. However, understanding pH’s impact on lettuce growth in static hydroponic systems is limited. Hence, this study was conducted to determine the effect of pH nutrient solution on the growth performance and eating quality of lettuce grown in a static hydroponic system. Lettuce was grown in pH 5.2, 6.2, and 7.2 nutrient solutions. Its growth performance was collected weekly, including plant height, root length, number of leaves, leaf area, leaf chlorophyll content, total dry weight, and total moisture content. The harvested lettuce was analyzed for firmness, soluble solids concentration, titratable acidity, pH, and ascorbic acid content by the fourth week after transplanting. The plant height, root length, number of leaves, leaf area, and total dry weight of lettuce were affected by the interaction between nutrient solution pH and weeks after transplanting. By the third week after transplanting, lettuce grown in pH 6.2 was 11.12 and 18.67% taller than those grown in pH 7.2 and 5.2 nutrient solutions, respectively. By the fourth week after transplanting, the firmness of lettuce grown in pH 6.2 was significantly higher than those grown in pH 5.2 and 7.2 nutrient solutions by 2.34 and 7.32%, respectively. It is concluded that lettuce should be grown in a pH 6.2 nutrient solution when using a static hydroponic system.
Alexopoulos, A. A., Marandos, E., Assimakopoulou, A., Vidalis, N., Petropoulos, S. A., & Karapanos, I. C. (2021). Effect of nutrient solution pH on the growth, yield and quality of Taraxacum officinale and Reichardia picroides in a floating hydroponic system. Agronomy, 11(6), 1118. https://doi.org/10.3390/agronomy11061118
Anderson, T. S., Martini, M. R., Villiers, D. D., & Timmons, M. B. (2017). Growth and tissue elemental composition response of butterhead lettuce (Lactuca sativa, cv Flandria) to hydroponic conditions at different pH and alkalinity. Horticulturae, 3(3), 41. https://doi.org/10.3390/horticulturae3030041
Azia, F., & Stewart, K. A. (2001). Relationships between extractable chlorophyll and SPAD values in muskmelon leaves. Journal of Plant Nutrition, 24(6), 961-966. https://doi.org/10.1081/PLN-100103784
Babalar, M., Daneshvar, H., Díaz-Pérez, J. C., Nambeesan, S., Tabrizi, L., & Delshad, M. (2022). Effects of organic and chemical nitrogen fertilization and postharvest treatments on the visual and nutritional quality of fresh-cut celery (Apium graveolens L.) during storage. Food Science and Nutrition, 11(1), 320-333. https://doi.org/10.1002/fsn3.3063
Biswas, S., & Das, R. (2022). Hydroponics: A promising modern intervention in agriculture. Agriculture and Food: E-Newsletter, 4(1), 334-338.
Chang, C.-L., Hong, G.-F., & Fu, W.-L. (2018). Design and implementation of a knowledge-based nutrient solution irrigation system for hydroponic applications. Transactions of the American Society of Agricultural and Biological Engineers, 61(2), 369-379.
Colla, G., Suarez, C. M. C., Cardarelli, M., & Rouphael, Y. (2010). Improving nitrogen use efficiency in melon by grafting. HortScience, 45(4), 559-565. https://doi.org/10.21273/HORTSCI.45.4.559
Fathidarehnijeh, E., Nadeem, M., Cheema, M., Thomas, R., Krishnapillai, M., & Galagedar, L. (2023). Current perspective on nutrient solution management strategies to improve the nutrient and water use efficiency in hydroponic systems. Canadian Journal of Plant Science, 104(2), 88-102. https://doi.org/10.1139/cjps-2023-0034
Gillespie, D. P., Kubota, C., & Miller, S. A. (2020). Effects of low pH of hydroponic nutrient solution on plant growth, nutrient uptake, and root rot disease incidence of basil (Ocimum basilicum L.). HortScience, 55(8), 1251–1258. https://doi.org/10.21273/hortsci14986-20
Gillespie, D. P., Papio, G., & Kubota, C. (2021). High nutrient concentrations of hydroponic can improve growth and nutrient uptake of spinach (Spinacia oleracea L.) grown in acidic nutrient solution. HortScience, 56(6), 687-694. https://doi.org/10.21273/HORTSCI15777-21
Gitelson, A. A., Grits, Y., & Merzlyak, M. N. (2003). Relationships between leaf chlorophyll content and spectral reflectance and algorithms for non-destructive chlorophyll assessment in higher plant leaves. Journal of Plant Physiology, 160(3), 271-282. https://doi.org/10.1078/0176-1617-00887
Gumisiriza, M. S., Ndakidemi, P., Nalunga, A., & Mbega, E. R. (2022). Building sustainable societies through vertical soilless farming: A cost-effectiveness analysis on a small-scale non-greenhouse hydroponic system. Sustainable Cities and Society, 83, 103923. https://doi.org/10.1016/j.scs.2022.103923
Havé, M., Marmagne, A., Chardon, F., & Masclaux-Daubresse, C. (2017). Nitrogen remobilisation during leaf senescence: Lessons from Arabidopsis to crops. Journal of Experimental Botany, 68(10), 2513-2529. https://doi.org/10.1093/jxb/erw365
Hopkinson, S., & Harris, M. (2019). Effect of pH on hydroponically grown bush beans (Phaseolus vulgaris). International Journal of Environment Agriculture and Biotechnology, 4(1), 142-145. https://doi.org/10.22161/ijeab/4.1.23
Jabatan Perancangan Bandar dan Desa Semenanjung Malaysia. (n.d.). Panduan pelaksanaan inisiatif pembangunan kejiranan hijau: Pembangunan kebun kejiranan [Green neighbourhood development initiative implementation guide: Neighbourhood garden development]. PLANMalaysia. https://mytownnet.planmalaysia.gov.my/wp-content/uploads/2023/03/LAPORAN-PANDUAN-PELAKSANAAN-KEBUN-KEJIRANANlow.pdf
Kim, M. J., Moon, Y., Tou, J. C., Mou, B., & Waterland, N. L. (2016). Nutritional value, bioactive compounds and health benefits of lettuce (Lactuca sativa L.). Journal of Food Composition and Analysis, 49, 19-34. https://doi.org/10.1016/j.jfca.2016.03.004
Konstantopoulou, E., Kapotis, G., Salachas, G., Petropoulos, S. A., Karapanos, I. C., & Passam, H. C. (2010). Nutritional quality of greenhouse lettuce at harvest and after storage in relation to N application and cultivation season. Scientia Horticulturae, 125(2), 93.e1-93.e5. https://doi.org/10.1016/j.scienta.2010.03.003
Kudirka, G., Viršilė, A., Sutulienė, R., Laužikė, K., & Samuolienė, G. (2023). Precise management of hydroponic nutrient solution pH: The effects of minor pH changes and MES buffer molarity on lettuce physiological properties. Horticulturae, 9(7), 837. https://doi.org/10.3390/horticulturae9070837
Lee, S. K., & Kader, A. A. (2000). Preharvest and postharvest factors influencing vitamin C content of horticultural crops. Postharvest Biology and Technology, 20(3), 207-220. https://doi.org/10.1016/S0925-5214(00)00133-2
Ling, Q., Huang, W., & Jarvis, P. (2011). Use of SPAD-502 meter to measure leaf chlorophyll concentration in Arabidopsis thaliana. Photosynthesis Research, 107, 209–214. https://doi.org/10.1007/s11120-010-9606-0
Mariani, M., Cahaya, N. M., & Ding, P. (2018). Physicochemical characteristics of Carissa congesta fruit during maturation. Acta Horticulturae, 1213, 461-464. https://doi.org/10.17660/ActaHortic.2018.1213.68
Md Nor, S., Ding, P., & Tan, J. C. (2023). Locule position and thawing duration affect postharvest quality of freshly cryo-frozen Musang King Durian fruit. Pertanika Journal of Tropical Agricultural Science, 46(2), 517-528. https://doi.org/10.47836/pjtas.46.2.09
Miceli, A., Mineo, V., & Planeta, D. (2018). Effect of nitrogen fertilizer level on quality and shelf-life of fresh cut Swiss chard. Acta Horticulturae, 1209, 271-276. https://doi.org/10.17660/ActaHortic.2018.1209.39
Ministry of Energy, Green Technology and Water. (2009). National Green Technology Policy (1st ed.). National Library of Malaysia.
Muhammad, R. M., & Rabu, M. R. (2015). The potential of urban farming technology in Malaysia: Policy intervention. Food and Fertilizer Technology Center for the Asian and Pacific Region Agricultural Policy Platform. https://ap.fftc.org.tw/article/965
Noumedem, J. A. K., Djeussi, D. E., Hritcu, L., Mihasan, M., & Kuete, V. (2017). Lactuca sativa. In V. Kuete (Ed.), Medicinal spices and vegetables from Africa: Therapeutic potential against metabolic, inflammatory, infectious and systemic diseases (pp. 437-449). Academic Press. https://doi.org/10.1016/B978-0-12-809286-6.00020-0
Nursyafiza, M. (2023). Effects of nutrient solution’s electrical conductivity rates on lettuce (Lactuca sativa L.) performance under static hydroponic cultivation [Unpublished Bachelor dissertation]. Universiti Putra Malaysia.
Saleem, H. M., Usman, K., Rizwan, M., Al Jabri, H., & Alsafran, M. (2022). Functions and strategies for enhancing zinc availability in plants for sustainable agriculture. Frontiers in Plant Science, 13, 1033092. https://doi.org/10.3389/fpls.2022.1033092
Samarakoon, U., Palmer, J., Ling, P., & Altland, J. (2020). Effects of electrical conductivity, pH, and foliar application of calcium chloride on yield and tipburn of Lactuca sativa grown using the nutrient–film technique. HortScience, 55(8), 1265-1271. https://doi.org/10.21273/HORTSCI15070-20
Savvas, D., & Gruda, N. (2018). Application of soilless culture technologies in the modern greenhouse industry – A review. European Journal of Horticultural Science, 83(5), 280-293. https://doi.org/10.17660/eJHS.2018/83.5.2
Singh, H., & Bruce, D. (2016). Electrical conductivity and pH guides for hydroponics. Oklahoma Cooperative Extension Service. https://extension.okstate.edu/fact-sheets/print-publications/hla/electrical-conductivity-and-ph-guide-for-hydroponics-hla-6722.pdf
Singh, H., Dunn, B. L., Payton, M., & Brandenberger, L. (2019). Selection of fertilizer and cultivar of sweet pepper and eggplant for hydroponic production. Agronomy, 9(8), 433. https://doi.org/10.3390/agronomy9080433
Solis, E. S., & Gabutan, J. U. (2023). Hydroponic lettuce (Lactuca sativa L. var. Lalique) production using commercially available nutrient solutions. International Journal of Agriculture and Environmental Research, 9(3), 330-341. https://doi.org/10.51193/IJAER.2023.9306
Sonneveld, C., & Voogt, W. (2009). Plant nutrition in future greenhouse production. In Plant nutrition of greenhouse crops (pp. 393-403). Springer. https://doi.org/10.1007/978-90-481-2532-6_17
Statista. (2024). Malaysia: Urbanization from 2013 to 2023. https://www.statista.com/statistics/455880/urbanization-in-malaysia/
Velazquez-Gonzalez, R. S., Garcia-Garcia, A. L., Ventura-Zapata, E., Barceinas-Sanchez, J. D. O., & Sosa-Savedra, J. C. (2022). A review on hydroponics and the technologies associated for medium- and small-scale operations. Agriculture, 12(5), 646. https://doi.org/10.3390/agriculture12050646
Weston, L. A., & Barth, M. M. (1997). Preharvest factors affecting postharvest quality of vegetables. HortScience, 32(5), 812-816. https://doi.org/10.21273/HORTSCI.32.5.812
Yuen, M. K. (2023, August 20). Interactive: Malaysia’s thriving fruits and vegetables. The Star. https://www.thestar.com.my/news/nation/2023/08/20/interactive-malaysias-thriving-fruits-and-vegetables
Zhao, W., Zhao, H., Wang, H., & He, Y. (2022). Research progress on the relationship between leaf senescence and quality, yield and stress resistance in horticultural plants. Frontiers in Plant Science, 13, 1044500. https://doi.org/10.3389/fpls.2022.1044500
Abou-Shanab, R. A. I., Mathai, P. P., Santelli, C., & Sadowsky, M. J. (2020). Indigenous soil bacteria and the hyperaccumulator Pteris vittata mediate phytoremediation of soil contaminated with arsenic species. Ecotoxicology and Environmental Safety, 195, 110458. https://doi.org/10.1016/j.ecoenv.2020.110458
Alka, S., Shahir, S., Ibrahim, N., Chai, T.-T., Bahari, Z. M., & Manan, F. A. (2020). The role of plant growth promoting bacteria on arsenic removal: A review of existing perspectives. Environmental Technology and Innovation, 17, 100602. https://doi.org/10.1016/j.eti.2020.100602
Antenozio, M. L., Giannelli, G., Marabottini, R., Brunetti, P., Allevato, E., Marzi, D., Capobianco, G., Bonifazi, G., Serranti, S., Visioli, G., Stazi, S. R., & Cardarelli, M. (2021). Phytoextraction efficiency of Pteris vittata grown on a naturally As-rich soil and characterization of As-resistant rhizosphere bacteria. Scientific Reports, 11, 6794. https://doi.org/10.1038/s41598-021-86076-7
Bui, T. K. A. (2017). Phytoremediation potential of Pteris vittata L. and Eleusine indica L. through field study and greenhouse experiments. Journal of Vietnamese Environment, 8(3), 156–160. https://doi.org/10.13141/jve.vol8.no3.pp156-160
Cai, C., Lanman, N. A., Withers, K. A., DeLeon, A. M., Wu, Q., Gribskov, M., Salt, D. E., & Banks, J. A. (2019). Three genes define a bacterial-like arsenic tolerance mechanism in the arsenic hyperaccumulating fern Pteris vittata. Current Biology, 29(10), 1625-1633.e3. https://doi.org/10.1016/j.cub.2019.04.029
Debela, A. S., Dawit, M., Tekere, M., & Itanna, F. (2022). Phytoremediation of soils contaminated by lead and cadmium in Ethiopia, using Endod (Phytolacca dodecandra L). International Journal of Phytoremediation, 24(13), 1339–1349. https://doi.org/10.1080/15226514.2021.2025336
Ghosh, S., Mohapatra, B., Satyanarayana, T., & Sar, P. (2020). Molecular and taxonomic characterization of arsenic (As) transforming Bacillus sp. strain IIIJ3-1 isolated from As-contaminated groundwater of Brahmaputra river basin, India. BMC Microbiology, 20, 256. https://doi.org/10.1186/s12866-020-01893-6
Guo, J., Muhammad, H., Lv, X., Wei, T., Ren, X., Jia, H., Atif, S., & Hua, L. (2020). Chemosphere Prospects and applications of plant growth promoting rhizobacteria to mitigate soil metal contamination: A review. Chemosphere, 246, 125823. https://doi.org/10.1016/j.chemosphere.2020.125823
Han, Y.-H., Jia, M.-R., Wang, S.-S., Deng, J.-C., Shi, X.-X., Chen, D.-L., Chen, Y., & Ma, L. Q. (2020). Arsenic accumulation and distribution in Pteris vittata fronds of different maturity: Impacts of soil As concentrations. Science of the Total Environment, 715, 135298. https://doi.org/10.1016/j.scitotenv.2019.135298
Kong, Z., Deng, Z., Glick, B. R., Wei, G., & Chou, M. (2017). A nodule endophytic plant growth-promoting Pseudomonas and its effects on growth, nodulation and metal uptake in Medicago lupulina under copper stress. Annals of Microbiology, 67, 49–58. https://doi.org/10.1007/s13213-016-1235-1
Lampis, S., Santi, C., Ciurli, A., Andreolli, M., & Vallini, G. (2015). Promotion of arsenic phytoextraction efficiency in the fern Pteris vittata by the inoculation of As-resistant bacteria: A soil bioremediation perspective. Frontiers in Plant Science, 6, 80. https://doi.org/10.3389/fpls.2015.00080
Liao, V. H.-C., Chu, Y.-J., Su, Y.-C., Hsiao, S.-Y., Wei, C.-C., Liu, C.-W., Liao, C.-M., Shen, W.-C., & Chang, F.-J. (2011). Arsenite-oxidizing and arsenate-reducing bacteria associated with arsenic-rich groundwater in Taiwan. Journal of Contaminant Hydrology, 123(1–2), 20–29. https://doi.org/10.1016/j.jconhyd.2010.12.003
Liu, S.-H., Zeng, G.-M., Niu, Q.-Y., Liu, Y., Zhou, L., Jiang, L.-H., Tan, X.-F., Xu, P., Zhang, C., & Cheng, M. (2017). Bioremediation mechanisms of combined pollution of PAHs and heavy metals by bacteria and fungi: A mini review. Bioresource Technology, 224, 25–33. https://doi.org/10.1016/j.biortech.2016.11.095
Lu, Y., Liao, S., Ding, Y., He, Y., Gao, Z., Song, D., Tian, W., & Zhang, X. (2022). Effect of Stevia rebaudiana Bertoni residue on the arsenic phytoextraction efficiency of Pteris vittata L. Journal of Hazardous Materials, 421, 126678. https://doi.org/10.1016/j.jhazmat.2021.126678
Manzoor, M., Abid, R., Rathinasabapathi, B., De Oliveira, L. M., da Silva, E., Deng, F., Rensing, C., Arshad, M., Gul, I., Xiang, P., & Ma, L. Q. (2019). Metal tolerance of arsenic-resistant bacteria and their ability to promote plant growth of Pteris vittata in Pb-contaminated soil. Science of the Total Environment, 660, 18–24. https://doi.org/10.1016/j.scitotenv.2019.01.013
Muazu A. S. (2024). Bacterial population of Pteris vittata with potentials for bioremediation of arsenic rich soils and plant growth promotion [Unpublished Doctoral thesis]. Universiti Sains Malaysia.
Nacoon, S., Jogloy, S., Riddech, N., Mongkolthanaruk, W., Kuyper, T. W., & Boonlue, S. (2020). Interaction between phosphate solubilizing bacteria and arbuscular mycorrhizal fungi on growth promotion and tuber inulin content of Helianthus tuberosus L. Scientific Reports, 10, 4916. https://doi.org/10.1038/s41598-020-61846-x
Popov, M., Zemanová, V., Sácký, J., Pavlík, M., Leonhardt, T., Matoušek, T., Kaňa, A., Pavlíková, D., & Kotrba, P. (2021). Arsenic accumulation and speciation in two cultivars of Pteris cretica L. and characterization of arsenate reductase PcACR2 and arsenite transporter PcACR3 genes in the hyperaccumulating cv. Albo-lineata. Ecotoxicology and Environmental Safety, 216, 112196. https://doi.org/10.1016/j.ecoenv.2021.112196
Sessitsch, A., Kuffner, M., Kidd, P., Vangronsveld, J., Wenzel, W. W., Fallmann, K., & Puschenreiter, M. (2013). The role of plant-associated bacteria in the mobilization and phytoextraction of trace elements in contaminated soils. Soil Biology and Biochemistry, 60, 182–194. https://doi.org/10.1016/j.soilbio.2013.01.012
Setyawan, H. B., Yulianto, R., Santoso, W. D., & Suryandari, N. (2021). Fern plant (Pteris vittata) as a phytoremediator of arsenic heavy metal and its effect to the growth and quality of Kale (Ipomea reptans Poir). In IOP Conference Series: Earth and Environmental Science (Vol. 637, No. 1, p. 012066). IOP Publishing. https://doi.org/10.1088/1755-1315/637/1/012066
Sharma, P. (2021). Efficiency of bacteria and bacterial assisted phytoremediation of heavy metals: An update. Bioresource Technology, 328, 124835. https://doi.org/10.1016/j.biortech.2021.124835
Sharma, P., Tripathi, S., Chaturvedi, P., Chaurasia, D., & Chandra, R. (2021). Newly isolated Bacillus sp. PS-6 assisted phytoremediation of heavy metals using Phragmites communis: Potential application in wastewater treatment. Bioresource Technology, 320(Part B), 124353. https://doi.org/10.1016/j.biortech.2020.124353
Tirry, N., Tahri Joutey, N., Sayel, H., Kouchou, A., Bahafid, W., Asri, M., & El Ghachtouli, N. (2018). Screening of plant growth promoting traits in heavy metals resistant bacteria: Prospects in phytoremediation. Journal of Genetic Engineering and Biotechnology, 16(2), 613–619. https://doi.org/10.1016/j.jgeb.2018.06.004
Tiwari, S., Sarangi, B. K., & Thul, S. T. (2016). Identification of arsenic resistant endophytic bacteria from Pteris vittata roots and characterization for arsenic remediation application. Journal of Environmental Management, 180, 359–365. https://doi.org/10.1016/j.jenvman.2016.05.029
Upadhyay, M. K., Yadav, P., Shukla, A., & Srivastava, S. (2018). Utilizing the potential of microorganisms for managing arsenic contamination: A feasible and sustainable approach. Frontiers in Environmental Science, 6, 24. https://doi.org/10.3389/fenvs.2018.00024
Vandana, U. K., Gulzar, A. B. M., Singha, L. P., Bhattacharjee, A., Mazumder, P. B., & Pandey, P. (2020). Hyperaccumulation of arsenic by Pteris vittata, a potential strategy for phytoremediation of arsenic-contaminated soil. Environmental Sustainability, 3, 169–178. https://doi.org/10.1007/s42398-020-00106-0
Wang, J., Zhao, F. J., Meharg, A. A., Raab, A., Feldmann, J., & Mcgrath, S. P. (2002). Mechanisms of arsenic hyperaccumulation in Pteris vittata. Uptake kinetics, interactions with phosphate, and arsenic speciation. Plant Physiology, 130(3), 1552-1561. https://doi.org/10.1104/pp.008185
Wang, Q., Ma, L., Zhou, Q., Chen, B., Zhang, X., Wu, Y., Pan, F., Huang, L., Yang, X., & Feng, Y. (2019). Inoculation of plant growth promoting bacteria from hyperaccumulator facilitated non-host root development and provided promising agents for elevated phytoremediation efficiency. Chemosphere, 234, 769–776. https://doi.org/10.1016/j.chemosphere.2019.06.132
Wang, Q., Xiong, D., Zhao, P., Yu, X., Tu, B., & Wang, G. (2011). Effect of applying an arsenic-resistant and plant growth-promoting rhizobacterium to enhance soil arsenic phytoremediation by Populus deltoides LH05-17. Journal of Applied Microbiology, 111(5), 1065–1074. https://doi.org/10.1111/j.1365-2672.2011.05142.x
Wang, Q., Zhang, W.-J., He, L.-Y., & Sheng, X.-F. (2018). Increased biomass and quality and reduced heavy metal accumulation of edible tissues of vegetables in the presence of Cd-tolerant and immobilizing Bacillus megaterium H3. Ecotoxicology and Environmental Safety, 148, 269–274. https://doi.org/10.1016/j.ecoenv.2017.10.036
Xu, J.-Y., Han, Y.-H., Chen, Y., Zhu, L.-J., & Ma, L. Q. (2016). Arsenic transformation and plant growth promotion characteristics of As-resistant endophytic bacteria from As-hyperaccumulator Pteris vittata. Chemosphere, 144, 1233–1240. https://doi.org/10.1016/j.chemosphere.2015.09.102
Yan, H., Gao, Y., Wu, L., Wang, L., Zhang, T., Dai, C., Xu, W., Feng, L., Ma, M., Zhu, Y.-G., & He, Z. (2019). Potential use of the Pteris vittata arsenic hyperaccumulation-regulation network for phytoremediation. Journal of Hazardous Materials, 368, 386–396. https://doi.org/10.1016/j.jhazmat.2019.01.072
Yang, C., Han, N., Inoue, C., Yang, Y.-L., Nojiri, H., Ho, Y.-N., & Chien, M.-F. (2022). Rhizospheric plant-microbe synergistic interactions achieve efficient arsenic phytoextraction by Pteris vittata. Journal of Hazardous Materials, 434, 128870. https://doi.org/10.1016/j.jhazmat.2022.128870
ISSN 1511-3701
e-ISSN 2231-8542