e-ISSN 2231-8542
ISSN 1511-3701
Dipa Chowdhury, Shohana Parvin, Satya Ranjan Saha, Md. Moshiul Islam, Minhaz Ahmed, Satyen Mondal and Tofayel Ahamed
Pertanika Journal of Tropical Agricultural Science, Volume 47, Issue 4, November 2024
DOI: https://doi.org/10.47836/pjtas.47.4.13
Keywords: Antioxidant, Catharanthus roseus, oxidative stress, proline, seawater
Published on: 29 November 2024
Salt stress impedes plant growth and development due to several factors, including the generation of cellular oxidative stressors. This study aimed to assess the impacts of seawater-induced salinity on the plant development, physio-biochemical responses, and antioxidant capacity of Catharanthus roseus grown in a variety of seawater (4, 8, and 12 dS/m) for varying durations (60, 90, and 120 days). The experiment was laid out in a randomized complete block design with five replications. The results demonstrated that C. roseus successfully endured moderate salinity (8 dS/m) by maintaining plant height, number of leaves, branches, relative water content, and chlorophyll content with a minimum drop in dry biomass (25%) in a time- and dose-dependent approach. Furthermore, greater proline and soluble sugar contents suggested that C. roseus possessed enhanced osmoprotective capabilities to counteract osmotic stress caused by salinity. Conversely, all growth indicators decreased significantly at high salinity (12 dS/m). Increased levels of antioxidant enzyme activity catalase and ascorbate peroxidase, phenol and flavonoid, 2,2-diphenyl-1-picrylhydrazyl and 2,2-azino-bis-3-ethylbenzothiazoline-6-sulphonic acid indicate a coordinated function for antioxidant components in regulating reactive oxygen species (ROS) at low (4 dS/m) and moderate (8 dS/m) salinities. In contrast, excessive salinity (12 dS/m) led to a burst of ROS, as seen by elevated levels of hydrogen peroxide, malondialdehyde, and electrolyte leakage that greatly reduced total dry matter (72%), especially on days 120. The ion studies on plants subjected to salinity revealed that most Na+ remained in the roots. In contrast, most K+, Ca2+, and Mg2+ are deposited more firmly in the leaves than in the roots. The findings imply that C. roseus may tolerate moderate salinity (8 dS/m) owing to its enhanced antioxidant defense system and osmolytes, which trigger antioxidant enzymes and maintain ionic balance.
Abdelhamid, M. T., Rady, M. M., Osman, A. S., & Abdalla, M. A. (2013). Exogenous application of proline alleviates salt-induced oxidative stress in Phaseolus vulgaris L. plants. The Journal of Horticultural Science and Biotechnology, 88(4), 439-446. https://doi.org/10.1080/14620316.2013.11512989
Abdul-Hafeez, E. Y., Karamova, N. S., & Ilinskaya, O. N. (2014). Antioxidant activity and total phenolic compound content of certain medicinal plants. International Journal of Biosciences, 5(9), 213-222.
Abogadallah, G. M. (2010). Insights into the significance of antioxidative defense under salt stress. Plant Signaling and Behavior, 5(4), 369-374. https://doi.org/10.4161/psb.5.4.10873
Acosta-Motos, J. R., Ortuno, M. F., Bernal-Vicente, A., Diaz-Vivancos, P., Sanchez-Blanco, M. J., & Hernandez, J. A. (2017). Plant responses to salt stress: Adaptive mechanisms. Agronomy, 7(1), 18. https://doi.org/10.3390/agronomy7010018
Ahmad, P., Sarwat, M., Bhat, N. A., Wani, M. R., Kazi, A. G., & Tran, L.-S. P. (2015). Alleviation of cadmium toxicity in Brassica juncea L. (Czern. & Coss.) by calcium application involves various physiological and biochemical strategies. PLOS One, 10(1), e0114571. https://doi.org/10.1371/journal.pone.0114571
Akter, R., Hasan, N., Reza, F., Asaduzzaman, M., Begum, K., & Shammi, M. (2023). Hydrobiology of saline agriculture ecosystem: A review of scenario change in south-west region of Bangladesh. Hydrobiology, 2(1), 162-180. https://doi.org/10.3390/hydrobiology2010011
Alam, M. A., Juraimi, A. S., Rafii, M. Y., & Abdul Hamid, A. (2015). Effect of salinity on biomass yield and physiological and stem-root anatomical characteristics of purslane (Portulaca oleracea L.) accessions. BioMed Research International, 2015, 105695. https://doi.org/10.1155/2015/105695
Aldesuquy, H. S., Baka, Z. A., El-Shehaby, O. A., & Ghanem, H. E. (2012). Efficacy of seawater salinity on osmotic adjustment and solutes allocation in wheat (Triticum aestivum) flag leaf during grain filling. International Journal of Plant Physiology and Biochemistry, 4(3), 33-45. https://doi.org/10.5897/IJPPB11.059
Ali, S., Ullah, S., Khan, M. N., Khan, W. M., Razak, S. A., Wahab, S., Hafeez, A., Bangash, S. A. K., & Poczai, P. (2022). The effects of osmosis and thermo-priming on salinity stress tolerance in Vigna radiata L. Sustainability, 14(19), 12924. https://doi.org/10.3390/su141912924
Apel, K., & Hirt, H. (2004). Reactive oxygen species: Metabolism, oxidative stress, and signal transduction. Annual Review of Plant Biology, 55, 373-399. https://doi.org/10.1146/annurev.arplant.55.031903.141701
Azeem, M., Pirjan, K., Qasim, M., Mahmood, A., Javed, T., Muhammad, H., Yang, S., Dong, R., Ali, B., & Rahimi, M. (2023). Salinity stress improves antioxidant potential by modulating physio-biochemical responses in Moringa oleifera Lam. Scientific Reports, 13, 2895. https://doi.org/10.1038/s41598-023-29954-6
Azeem, M., Qasim, M., Abbasi, M. W., Tayyab., Sultana, R., Adnan, M. Y., & Ali, H. (2019). Salicylic acid seed priming modulates some biochemical parameters to improve germination and seedling growth of salt stressed wheat (Triticum aestivum L.). Pakistan Journal of Botany, 51(2), 385-391. https://doi.org/10.30848/PJB2019-2(1)
Banerjee, A., & Roychoudhury, A. (2017). Effect of salinity stress on growth and physiology of medicinal plants. In M. Ghorbanpour & A. Varma (Eds.), Medicinal plants and environmental challenges (pp. 177-188). Springer. https://doi.org/10.1007/978-3-319-68717-9_10
Bates, L. S., Waldren, R. P., & Teare, I. D. (1973). Rapid determination of free proline for water-stress studies. Plant and Soil, 39, 205-207. https://doi.org/10.1007/BF00018060
Bekka, S., Tayeb-Hammani, K., Boucekkine, I., El-Amin Aissiou, M. Y., & Djazouli, Z. E. (2022). Adaptation strategies of Moringa oleifera under drought and salinity stresses. Ukrainian Journal of Ecology, 12(4), 8-16.
Bistgani, Z. E., Hashemi, M., DaCosta, M., Craker, L., Maggi, F., & Morshedloo, M. R. (2019). Effect of salinity stress on the physiological characteristics, phenolic compounds and antioxidant activity of Thymus vulgaris L. and Thymus daenensis Celak. Industrial Crops and Products, 135, 311-320. https://doi.org/10.1016/J.INDCROP.2019.04.055
Cai, Y., Luo, Q., Sun, M., & Corke, H. (2004). Antioxidant activity and phenolic compounds of 112 traditional Chinese medicinal plants associated with anticancer. Life Sciences, 74(17), 2157-2184. https://doi.org/10.1016/j.lfs.2003.09.047
Cassaniti, C., Romano, D., & Flowers, T. J. (2012). The response of ornamental plants to saline irrigation water. In I. García-Garizábal & R. Abrahao (Eds.), Irrigation - Water management, pollution and alternative strategies (pp.131-158). InTech. https://doi.org/10.5772/31787
Chen, M. (2014). Chlorophyll modifications and their spectral extension in oxygenic photosynthesis. Annual Review of Biochemistry, 83, 317-340. https://doi.org/10.1146/annurev-biochem-072711-162943
Çiçek, N., & Çakirlar, H. (2002). The effect of salinity on some physiological parameters in two maize cultivars. Bulgarian Journal of Plant Physiology, 28(1-2), 66-74.
Das, A. K., Anik, T. R., Rahman, M. M., Keya, S. S., Islam, M. R., Rahman, M. A., Sultana, S., Ghosh, P. K., Khan, S., Ahamed, T., Ghosh, T. K., Tran, L. S.-P., & Mostofa, M. G. (2022). Ethanol treatment enhances physiological and biochemical responses to mitigate saline toxicity in soybean. Plants, 11(3), 272. https://doi.org/10.3390/plants11030272
Das, S., Parvin, S., Islam, M. M., Rahman, A., Mohi-Ud-Din, M., Ahmed, M., Miah, M. G., Alamri, S., & ALMunqedhi, B. M. A. (2024). Morpho-physiological and biochemical responses of Vitex negundo to seawater induced salt stress. South African Journal of Botany, 166, 648-662. https://doi.org/10.1016/j.sajb.2024.01.069
Das, S., & Sharangi, A. B. (2017). Madagascar periwinkle (Catharanthus roseus L.): Diverse medicinal and therapeutic benefits to humankind. Journal of Pharmacognosy and Phytochemistry, 6(5), 1695-1701.
Dasgupta, S., Hossain, M. M., Huq, M., & Wheeler, D. (2015). Climate change and soil salinity: The case of coastal Bangladesh. Ambio, 44, 815-826. https://doi.org/10.1007/s13280-015-0681-5
Dawood, M. G., Taie, H. A. A., Nassar, R. M. A., Abdelhamid, M. T., & Schmidhalter, U. (2014). The changes induced in the physiological, biochemical and anatomical characteristics of Vicia faba by the exogenous application of proline under seawater stress. South African Journal of Botany, 93, 54-63. https://doi.org/10.1016/j.sajb.2014.03.002
de Abreu, I. N., & Mazzafera, P. (2005). Effect of water and temperature stress on the content of active constituents of Hypericum brasiliense Choisy. Plant Physiology and Biochemistry, 43(3), 241-248. https://doi.org/10.1016/j.plaphy.2005.01.020
Djeridane, A., Yousfi, M., Nadjemi, B., Boutassouna, D., Stocker, P., & Vidal, N. (2006). Antioxidant activity of some Algerian medicinal plants extracts containing phenolic compounds. Food Chemistry, 97(4), 654-660. https://doi.org/10.1016/j.foodchem.2005.04.028
Farooq, T. H., Rafay, M., Basit, H., Shakoor, A., Shabbir, R., Riaz, M. U., Ali, B., Kumar, U., Qureshi, K. A., & Jaremko, M. (2022). Morpho-physiological growth performance and phytoremediation capabilities of selected xerophyte grass species toward Cr and Pb stress. Frontiers in Plant Science, 13, 997120. https://doi.org/10.3389/fpls.2022.997120
Geissler, N., Hussin, S., & Koyro, H.-W. (2009). Interactive effects of NaCl salinity and elevated atmospheric CO2 concentration on growth, photosynthesis, water relations and chemical composition of the potential cash crop halophyte Aster tripolium L. Environmental and Experimental Botany, 65(2-3), 220-231. https://doi.org/10.1016/j.envexpbot.2008.11.001
Gengmao, Z., Quanmei, S., Yu, H., Shihui, L., & Changhai, W. (2014). The physiological and biochemical responses of a medicinal plant (Salvia miltiorrhiza L.) to stress caused by various concentrations of NaCl. PLOS One, 9(2), e89624. https://doi.org/10.1371/journal.pone.0089624
Goyal, M., & Asthir, B. (2010). Polyamine catabolism influences antioxidative defense mechanism in shoots and roots of five wheat genotypes under high temperature stress. Plant Growth Regulation, 60, 13-25. https://doi.org/10.1007/s10725-009-9414-8
Gururani, M. A., Venkatesh, J., & Tran, L. S. P. (2015). Regulation of photosynthesis during abiotic stress-induced photoinhibition. Molecular Plant, 8(9), 1304-1320. https://doi.org/10.1016/j.molp.2015.05.005
Haddadi, B. S., Hassanpour, H., & Niknam, V. (2016). Effect of salinity and waterlogging on growth, anatomical and antioxidative responses in Mentha aquatica L. Acta Physiologiae Plantarum, 38, 119. https://doi.org/10.1007/s11738-016-2137-3
Hand, M. J., Taffouo, V. D., Nouck, A. E., Nyemene, K. P. J., Tonfack, B., Meguekam, T. L., & Youmbi, E. (2017). Effects of salt stress on plant growth, nutrient partitioning, chlorophyll content, leaf relative water content, accumulation of osmolytes and antioxidant compounds in pepper (Capsicum annuum L.) cultivars. Notulae Botanicae Horti Agrobotanici Cluj-Napoca, 45(2), 481-490. https://doi.org/10.15835/nbha45210928
Hassanein, R. A., Hassanein, A. A., Haider, A. S., & Hashem, H. A. (2009). Improving salt tolerance of Zea mays L. plants by presoaking their grains in glycine betaine. Australian Journal of Basic and Applied Sciences, 3(2), 928-942.
Hnilickova, H., Kraus, K., Vachova, P., & Hnilicka, F. (2021). Salinity stress affects photosynthesis, malondialdehyde formation, and proline content in Portulaca oleracea L. Plants, 10(5), 845. https://doi.org/10.3390/plants10050845
Isayenkov, S. V., & Maathuis, F. J. M. (2019). Plant salinity stress: Many unanswered questions remain. Frontiers in Plant Science, 10, 80. https://doi.org/10.3389/fpls.2019.00080
Islam, M. M., Jahan, K., Sen, A., Urmi, T. A., Haque, M. M., Ali, H. M., Siddiqui, M. H., & Murata, Y. (2023). Exogenous application of calcium ameliorates salinity stress tolerance of tomato (Solanum lycopersicum L.) and enhances fruit quality. Antioxidants, 12(3), 558. https://doi.org/10.3390/antiox12030558
Jahan, I., Parvin, S., Miah, M. G., & Ahmed, J. U. (2018). Effect of salinity on the physiological and biochemical responses of neem. International Journal of Environmental and Agriculture Research, 4(5), 47-54.
Jaleel, C. A., Lakshmanan, G. M. A., Gomathinayagam, M., & Panneerselvam, R. (2008). Triadimefon induced salt stress tolerance in Withania somnifera and its relationship to antioxidant defense system. South African Journal of Botany, 74(1), 126-132. https://doi.org/10.1016%2Fj.sajb.2007.10.003
Kronzucker, H. J., Coskun, D., Schulze, L. M., Wong, J. R., & Britto, D. T. (2013). Sodium as nutrient and toxicant. Plant and Soil, 369, 1-23. https://doi.org/10.1007/s11104-013-1801-2
Kumar, S., Li, G., Yang, J., Huang, X., Ji, Q., Liu, Z., Ke, W., & Hou, H. (2021). Effect of salt stress on growth, physiological parameters, and ionic concentration of water dropwort (Oenanthe javanica) cultivars. Frontiers in Plant Science, 12, 660409. https://doi.org/10.3389/fpls.2021.6604092021
Li, Z., Geng, W., Tan, M., Ling, Y., Zhang, Y., Zhang, L., & Peng, Y. (2022). Differential responses to salt stress in four white clover genotypes associated with root growth, endogenous polyamines metabolism, and sodium/potassium accumulation and transport. Frontiers in Plant Science, 13, 896436. https://doi.org/10.3389/fpls.2022.896436
Lutts, S., Kinet, J. M., & Bouharmont, J. (1996). NaCl-induced senescence in leaves of rice (Oryza sativa L.) cultivars differing in salinity resistance. Annals of Botany, 78(3), 389-398. https://doi.org/10.1006/anbo.1996.0134
Mafakheri, A., Siosemardeh, A., Bahramnejad, B., Struik, P. C., & Sohrabi, Y. (2010). Effect of drought stress on yield, proline and chlorophyll contents in three chickpea cultivars. Australian Journal of Crop Science, 4(8), 580-585.
Mehmood, S., Khatoon, Z., Amna., Ahmad, I., Muneer, M. A., Kamran, M. A., Ali, J., Ali, B., Chaudhary, H. J., & Munis, M. F. H. (2023). Bacillus sp. PM31 harboring various plant growth-promoting activities regulates Fusarium dry rot and wilt tolerance in potato. Archives of Agronomy and Soil Science, 69(2), 197-211. https://doi.org/10.1080/03650340.2021.1971654
Meireles, D., Gomes, J., Lopes, L., Hinzmann, M., & Machado, J. (2020). A review of properties, nutritional and pharmaceutical applications of Moringa oleifera: Integrative approach on conventional and traditional Asian medicine. Advances in Traditional Medicine, 20, 495-515. https://doi.org/10.1007/s13596-020-00468-0
Meloni, D. A., Gulotta, M. R., Martínez, C. A., & Oliva, M. A. (2004). The effects of salt stress on growth, nitrate reduction and proline and glycinebetaine accumulation in Prosopis alba. Brazilian Journal of Plant Physiology, 16(1), 39-46. https://doi.org/10.1590/S1677-04202004000100006
Mostofa, M. G., Saegusa, D., Fujita, M., & Tran, L.-S. P. (2015). Hydrogen sulfide regulates salt tolerance in rice by maintaining Na+/K+ balance, mineral homeostasis and oxidative metabolism under excessive salt stress. Frontiers in Plant Science, 6, 1055. https://doi.org/10.3389/fpls.2015.01055
Munns, R., & Tester, M. (2008). Mechanisms of salinity tolerance. Annual Review of Plant Biology, 59, 651-681. https://doi.org/10.1146/annurev.arplant.59.032607.092911
Nakano, Y., & Asada, K. (1981). Hydrogen peroxide is scavenged by ascorbate-specific peroxidase in spinach chloroplasts. Plant and Cell Physiology, 22(5), 867-880. https://doi.org/10.1093/oxfordjournals.pcp.a076232
Noctor, G., Mhamdi, A., & Foyer, C. H. (2016). Oxidative stress and antioxidative systems: Recipes for successful data collection and interpretation. Plant, Cell and Environment, 39(5), 1140-1160. https://doi.org/10.1111/pce.12726
Obaidullah, A. J. M., Parvin, S., Saha, S. R., Biswas, M. S., Das, S., Ahmed, T., & Sultana, S. (2022). Salinity stress effects on some morpho-physiological and biochemical traits of Basak. European Journal of Agriculture and Food Sciences, 4(3), 50-56. https://doi.org/10.24018/ejfood.2022.4.3.496
Pan, Y.-Q., Guo, H., Wang, S.-M., Zhao, B., Zhang, J.-L., Ma, Q., Yin, H.-J., & Bao, A.-K. (2016). The photosynthesis, Na+/K+ homeostasis and osmotic adjustment of Atriplex canescens in response to salinity. Frontiers in Plant Science, 7, 848. https://doi.org/10.3389/fpls.2016.00848
Qin, J., Dong, W. Y., He, K. N., Yu, Y., Tan, G. D., Han, L., Dong, M., Zhang, Y. Y., Zhang, D., Li, A. Z., & Wang, Z. L. (2010). NaCl salinity-induced changes in water status, ion contents and photosynthetic properties of Shepherdia argentea (Pursh) Nutt. seedlings. Plant, Soil and Environment, 56(7), 325-332. https://doi.org/10.17221/209/2009-PSE
Rahman, M. M., Rahman, M. A., Miah, M. G., Saha, S. R., Karim, M. A., & Mostofa, M. G. (2017). Mechanistic insight into salt tolerance of Acacia auriculiformis: The importance of ion selectivity, osmoprotection, tissue tolerance, and Na+ exclusion. Frontiers in Plant Science, 8, 155. https://doi.org/10.3389/fpls.2017.00155
Rahneshan, Z., Nasibi, F., & Moghadam, A. A. (2018). Effects of salinity stress on some growth, physiological, biochemical parameters and nutrients in two pistachio (Pistacia vera L.) rootstocks. Journal of Plant Interactions, 13(1), 73-82. https://doi.org/10.1080/17429145.2018.1424355
Rangani, J., Parida, A. K., Panda, A., & Kumari, A. (2016). Coordinated changes in antioxidative enzymes protect the photosynthetic machinery from salinity induced oxidative damage and confer salt tolerance in an extreme halophyte Salvadora persica L. Frontiers in Plant Science, 7, 50. https://doi.org/10.3389/fpls.2016.00050
Roy, P. R., Tahjib-Ul-Arif, M., Polash, M. A. S., Hossen, M. Z., & Hossain, M. A. (2019). Physiological mechanisms of exogenous calcium on alleviating salinity-induced stress in rice (Oryza sativa L.). Physiology and Molecular Biology of Plants, 25, 611-624. https://doi.org/10.1007/s12298-019-00654-8
Sadak, M. S. (2019). Physiological role of trehalose on enhancing salinity tolerance of wheat plant. Bulletin of the National Research Centre, 43, 53.
Sairam, R. K., Deshmukh, P. S., & Shukla, D. S. (1997). Tolerance of drought and temperature stress in relation to increased antioxidant enzyme activity in wheat. Journal of Agronomy and Crop Science, 178(3), 171-178. https://doi.org/10.1111/j.1439-037X.1997.tb00486.x
Saleem, A., Zulfiqar, A., Ali, B., Naseeb, M. A., Almasaudi, A. S., & Harakeh, S. (2022). Iron sulfate (FeSO4) improved physiological attributes and antioxidant capacity by reducing oxidative stress of Oryza sativa L. cultivars in alkaline soil. Sustainability, 14(24), 16845. https://doi.org/10.3390/su142416845
Sarker, U., Islam, M. T., & Oba, S. (2018). Salinity stress accelerates nutrients, dietary fiber, minerals, phytochemicals and antioxidant activity in Amaranthus tricolor leaves. PLOS One, 13(11), e0206388. https://doi.org/10.1371/journal.pone.0206388
Sen, A., Islam, M. M., Zaman, E., Ghosh, U. K., Momtaz, M. B., Islam, M. A., Urmi, T. A., Mamun, M. A. A., Rahman, M. M., Kamal, M. Z. U., Rahman, G. K. M. M., Haque, M. M., & Murata, Y. (2022). Agro-morphological, yield and biochemical responses of selected wheat (Triticum aestivum L.) genotypes to salt stress. Agronomy, 12(12), 3027. https://doi.org/10.3390/agronomy12123027
Sharif, P., Seyedsalehi, M., Paladino, O., Van Damme, P., Sillanpää, M., & Sharifi, A. A. (2018). Effect of drought and salinity stresses on morphological and physiological characteristics of canola. International Journal of Environmental Science and Technology, 15, 1859-1866. https://doi.org/10.1007/s13762-017-1508-7
Sivritepe, N., Sivritepe, H. O., & Eris, A. (2003). The effects of NaCl priming on salt tolerance in melon seedlings grown under saline conditions. Scientia Horticulturae, 97(3-4), 229-237. https://doi.org/10.1016/S0304-4238(02)00198-X
Subudhi, P. K., & Baisakh, N. (2011). Spartina alterniflora Loisel., a halophyte grass model to dissect salt stress tolerance. In Vitro Cellular and Developmental Biology - Plant, 47, 441-457. https://doi.org/10.1007/s11627-011-9361-8
Sun, Y. L., Li, F., Su, N., Sun, X. L., Zhao, S. J., & Meng, Q. W. (2010). The increase in unsaturation of fatty acids of phosphatidylglycerol in thylakoid membrane enhanced salt tolerance in tomato. Photosynthetica, 48, 400-408. https://doi.org/10.1007/s11099-010-0052-1
Taïbi, K., Taïbi, F., Abderrahim, L. A., Ennajah, A., Belkhodja, M., & Mulet, J. M. (2016). Effect of salt stress on growth, chlorophyll content, lipid peroxidation and antioxidant defence systems in Phaseolus vulgaris L. South African Journal of Botany, 105, 306-312. https://doi.org/10.1016/j.sajb.2016.03.011
Tamanna, T., Islam, M. M., Chaity, A. R., Shams, S.-N.-U., Rasel, M. A., Haque, M. M., Miah, M. G., Alamri, S., & Murata, Y. (2023). Water relation, gas exchange characteristics and yield performance of selected mungbean genotypes under low soil moisture condition. Agronomy, 13(4), 1068. https://doi.org/10.3390/agronomy13041068
Turan, M. A., Elkarim, A. H. A., Taban, N., & Taban, S. (2010). Effect of salt stress on growth and ion distribution and accumulation in shoot and root of maize plant. African Journal of Agricultural Research, 5(7), 584-588.
Uematsu, K., Suzuki, N., Iwamae, T., Inui, M., & Yukawa, H. (2012). Increased fructose 1, 6-bisphosphate aldolase in plastids enhances growth and photosynthesis of tobacco plants. Journal of Experimental Botany, 63(8), 3001-3009. https://doi.org/10.1093/jxb/ers004
Urmi, T. A., Islam, M. M., Zumur, K. N., Abedin, M. A., Haque, M. M., Siddiqui, M. H., Murata, Y., & Hoque, M. A. (2023). Combined effect of salicylic acid and proline mitigates drought stress in rice (Oryza sativa L.) through the modulation of physiological attributes and antioxidant enzymes. Antioxidants, 12(7), 1438. https://doi.org/10.3390/antiox12071438
Wang, D., Gao, Y., Sun, S., Lu, X., Li, Q., Li, L., Wang, K., & Liu, J. (2022). Effects of salt stress on the antioxidant activity and malondialdehyde, solution protein, proline, and chlorophyll contents of three Malus species. Life, 12(11), 1929. https://doi.org/10.3390/life12111929
Weisany, W., Sohrabi, Y., Heidari, G., Siosemardeh, A., & Ghassemi-Golezani, K. (2012). Changes in antioxidant enzymes activity and plant performance by salinity stress and zinc application in soybean (Glycine max L.). Plant Omics, 5(2), 60-67.
Witham, F. H., Blaydes, D. F., & Devlin, R. M. (1971). Chlorophyll absorption spectrum and quantitative determination. Experiments in Plant Physiology, 1971, 167-2.
Yemm, E. W., & Willis, A. J. (1954). The estimation of carbohydrates in plant extracts by anthrone. Biochemical Journal, 57(3), 508-514. https://doi.org/10.1042/bj0570508
Zhishen, J., Mengcheng, T., & Jianming, W. (1999). The determination of flavonoid contents in mulberry and their scavenging effects on superoxide radicals. Food Chemistry, 64(4), 555-559. https://doi.org/10.1016/S0308-8146(98)00102-2
ISSN 1511-3701
e-ISSN 2231-8542